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Abstract
Statistical downscaling method is mainly practiced to relate atmospheric 
circulation to surface variables for forecast and prediction of the regional 
climate. As we know in Rajasthan drought is foremost problem due to scanty 
of rainfall. The core objective of present study stands to prognosis rainfall 
variation also assess the recital of Multiple Linear Regression (MLR) to 
access the variation in rainfall. The data were analyzed using higher resolution 
atmospheric data which includes daily National Centers for Environmental 
Prediction (NCEP)/ National Center for Atmospheric Research (NCAR) 
reanalysis data and daily mean climate model result intended for A2 and 
B2 scenarios of the Hadley Centre Climate Model (HadCM3) model. The 
period from 1961-1990 used as base line due to availability of adequate 
period which are required to established a reliable climatology. Results of 
the study shows increasing trend of future precipitation intended for both 
A2 and B2 scenarios. From the study it has been found that MLR model is 
more superior to downscale precipitation in most districts under study area.
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Introduction 
The natural as well as socioeconomic variability 
of state Rajasthan which includes water resource 
management, agriculture, forestry, tourism etc. are 
highly influenced by key component of hydrological 
cycle i.e. precipitation. Therefore, it is necessitated 

for predicting future precipitation change since it 
is an input for climate impact model to assess the 
consequences of global change in climate. GCMs 
under climate input model often found inadequate 
due to limited depiction of mesoscale atmospheric 
processes, topography and sea distribution. Besides, 
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with respect to precipitation, GCMs show higher 
spatial scale (grid point area) compare to require 
in climate impact model and ultimately it will lead 
to in frequency statistics like exceedance of heavy 
precipitation.

As response from state control board, though 
several studies, Rajasthan is more likely to face 
the problem of increased water scarcity because 
of overall decrease in rainfall and augmented 
evapotranspiration as a result of global warming. 
During the year, 1988, 1998, 1999, 2000 and 
2001, Rajasthan has faced drought like situation. In 
addition to this state also has maximum susceptibility 
and lowest adaptive capacity fluctuating climate. 
Drought is frequent in state like Rajasthan and 
intensity of droughts will determine the condition 
of state, in terms of its natural and socioeconomic 
studies. Evapotranspiration can be increase by even 
one percent increased the temperature from base 
data. Therefore, the quality and quantity of surface 
and ground water resources of Rajasthan are 
drastically deteriorated in last twenty years.

Material and Method
Study Area
In terms of area, Rajasthan is largest state in country 
occupying 3,42,000 square kilometers area. It has 
33 districts and situated between 69°30' to 78°17'E 
longitude and 23°30'to 30°12' N latitude. Climate of 
Rajasthan in northwestern India is usually arid to 

semi-arid with hot temperatures over the year with 
extreme temperatures in both summer and winter. 
The state has two different epoch of rainfall, one is 
due to the South-West Monsoon after summer and 
another rainfall due to Western Disturbances.

Multiple Linear Regressions
MLR model are used to build the linear relationship 
between dependent variable (predictand) and one 
or more than one independent variables (predictor). 
This method allows the prediction of a single 
predictand variable from a set of predictors variables.
The equation of MLR represents as:

	 ...(i)

Where, YMLR= Estimated predict and (rainfall); α = 
Intercept; β = Regression coefficients; X = Predictors 
(26 predictors) which varies up to suitable nth terms 
and ε = error term.

Multiple linear regression attendant or observed a 
best fit plane. It was evaluated with R2. As response 
to correlation coefficient (R) expresses the degree 
to which two or more predictors are related to the 
predictand. 

Using the proposed methodology and The Pearson 
correlation coefficients amongst possible predictors 
as well as the recorded monthly precipitation were 

Figure 1
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premeditated each time part and the entire period, 
at all grid points in the atmospheric province.

In study 26 NCEP variables gives in table 1, that are 
used by means of substitution of recent opinion of 
GCM variables, and then were composed from the 
website of the Canadian Climate Change Scenarios 
Network (CCCSN) and it used in place of predictors 
in downscaling model. There are no general rules 
for selection of predictors but few researchers, 
suggested that the way to choose an appropriate 
NCEP predictor. Selection of predictors differ from 
single province to other and mostly be contingent 
on the physiognomies of large-scale atmospheric 
circulation, seasonality, regional topography, and 
the predictand to be downscaled. The aerial scope 
of the climatic province is used the assortment of 

predictors is frequently selected which depend on 
the mechanism of rainfall in an extent.

Estimation of Performance Downscaling Model
Downscaling model performance was evaluated on 
the basis of comparison between mean, variance 
and quartiles (25th, 50th and 75th) of observed and 
downscaled values of precipitation during both 
calibration and validation of model. Various statistical 
parameters like RMSE, R2, NSE were utilized to 
show the efficiency of downscale model. The most 
widely used statistical parameter were selected for 
assessing the efficiency of downscaled model.

Generally, higher value of NS and CC indicates well 
correctness of model prediction whereas lesser 
value of NS shows a poor model prediction. Nash-

Table 1: NCEP variables used by the select predictors for downscaling rainfall

S. No.	 Atmospheric pressure level	 NCEP Variables Descriptions	 Code	 Unit

A	 1013.25 hPa (1)	 Mean sea level pressure	 ncepmslpas	 Pa
B	 1000 hPa (6)	 Surface airflow strength	 ncepp__fas	 m/s
		  Surface zonal velocity	 ncepp__uas	 m/s
		  Surface meridional velocity	 ncepp__vas	 m/s
		  Surface vorticity	 ncepp__zas	 s-1

		  Surface wind direction	 ncepp_thas	 degree
		  Surface divergence	 ncepp_zhas	 s-1

C	 850 hPa (8)	 850 hPa airflow strength	 ncepp8_fas	 m/s
		  850 hPa zonal velocity	 ncepp8_uas	 m/s
		  850 hPa meridional velocity	 ncepp8_vas	 m/s
		  850 hPa vorticity	 ncepp8_zas	 s-1

		  850 hPa wind direction	 ncepp8thas	 degree
		  850 hPa divergence	 ncepp8zhas	 s-1

		  850 hPa geopotential height	 ncepp850as	 m
		  Relative humidity at 850 hPa	 ncepr850as	 %
D	 500 hPa (8)	 500 hPa airflow strength	 ncepp5_fas	 m/s 
		  500 hPa zonal velocity	 ncepp5_uas	 m/s
		  500 hPa meridional velocity	 ncepp5_vas	 m/s
		  500 hPa vorticity	 ncepp5_zas	 s-1

		  500 hPa wind direction	 ncepp5thas	  
		  500 hPa divergence	 ncepp5zhas	 s-1

		  500 hPa geopotential height	 ncepp500as	 m
		  Relative humidity at 500 hPa	 ncepr500as	 %
E	 Near surface (3)	 Surface specific humidity	 ncepshumas	 g/kg
		  Mean temperature at 2m	 nceptempas	 oC
		  Near surface relative humidity	 nceprhumas	 %
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Table 2: Results for accuracy assessment during the calibration and validation 
for monthly rainfall time series in different location of Rajasthan

Name of station	 NCEP	 Cali/Vali.	 RMSE	 NMSE	 NASH	 CC

Ajmer	 1961-1990	 Calibration	 38.58	 0.24	 0.75	 0.86
	 1991-2001	 Validation	 46.81	 0.3	 0.5	 0.83
Baran	 1961-1990	 Calibration	 39.18	 0.13	 0.86	 0.93
	 1991-2001	 Validation	 50.55	 0.2	 0.72	 0.89
Bhilwara	 1961-1990	 Calibration	 39.78	 0.21	 0.78	 0.88
	 1991-2001	 Validation	 53.5	 0.31	 0.51	 0.82
Bharatpur	 1961-1990	 Calibration	 43.54	 0.18	 0.81	 0.9
	 1991-2001	 Validation	 40.57	 0.17	 0.79	 0.9
Barmer	 1961-1990	 Calibration	 22.02	 0.25	 0.74	 0.86
	 1991-2001	 Validation	 35.93	 0.28	 0.71	 0.71
Bundi	 1961-1990	 Calibration	 36.46	 0.14	 0.85	 0.92
	 1991-2001	 Validation	 53.31	 0.25	 0.64	 0.86
Chittaurgarh	 1961-1990	 Calibration	 42.52	 0.16	 0.83	 0.91
	 1991-2001	 Validation	 59.09	 0.27	 0.61	 0.85
Churu	 1961-1990	 Calibration	 31.23	 0.34	 0.65	 0.81
	 1991-2001	 Validation	 27.58	 0.36	 0.55	 0.8
Dausa	 1961-1990	 Calibration	 39.7	 0.17	 0.82	 0.91
	 1991-2001	 Validation	 41.38	 0.18	 0.75	 0.9
Dhaulpur	 1961 - 1990	 Calibration	 49.56	 0.18	 0.81	 0.9
	 1991 - 2001	 Validation	 45.55	 0.18	 0.78	 0.9
Dungarpur	 1961 - 1990	 Calibration	 52.19	 0.18	 0.81	 0.9
	 1991 - 2001	 Validation	 64.3	 0.26	 0.62	 0.9
Ganganagar	 1961 – 2001 	 Calibration	 19.85	 0.35	 0.64	 0.8
	 1991 - 2001	 Validation	 17.89	 0.41	 0.58	 0.77
Hanumangarh	 1961-1990	 Calibration	 25.59	 0.34	 0.65	 0.81
	 1991-2001	 Validation	 21.95	 0.35	 0.64	 0.8
Jaipur	 1961-1990	 Calibration	 38.88	 0.21	 0.78	 0.88
	 1991-2001	 Validation	 41.43	 0.22	 0.76	 0.87
Jaisalmer	 1961-1990	 Calibration	 17.59	 0.37	 0.62	 0.79
	 1991-2001	 Validation	 22.91	 0.42	 0.53	 0.68
Jalor	 1961-1990	 Calibration	 32.5	 0.24	 0.75	 0.86
	 1991-2001	 Validation	 44.66	 0.37	 0.62	 0.79
Jhalawar	 1961-1990	 Calibration	 47.67	 0.16	 0.83	 0.91
	 1991-2001	 Validation	 58.03	 0.23	 0.76	 0.87
Jhunjhunu	 1961-1990	 Calibration	 33.42	 0.23	 0.76	 0.87
	 1991-2001	 Validation	 29.96	 0.23	 0.76	 0.87
Jodhpur	 1961-1990	 Calibration	 25.58	 0.29	 0.69	 0.83
	 1991-2001	 Validation	 31.09	 0.38	 0.61	 0.78
Karauli	 1961-1990	 Calibration	 43.53	 0.16	 0.83	 0.91
	 1991-2001	 Validation	 43.84	 0.16	 0.83	 0.91
Kota	 1961-1990	 Calibration	 37.83	 0.13	 0.86	 0.93
	 1991-2001	 Validation	 3.88	 0.22	 0.77	 0.87
Pali	 1961-1990	 Calibration	 40.93	 0.28	 0.71	 0.84
	 1991-2001	 Validation	 48.72	 0.34	 0.65	 0.81
Nagaur	 1961-1990	 Calibration	 34.86	 0.31	 0.68	 0.83
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Sutcliffe ranges from -∞ to 1. The value of NS = 
1 shows a faultless match among the model and 
annotations, Whereas efficiency of 0 shows that 
the model forecasts are as precise as the mean of 
the detected data. if value of efficiency is less than 
zero (-∞ < E < 0) then detected mean is a superior 
predictor than the model.

Lesser valves of RMSE and NMSE during model 
calibration and validation, gives smaller discrepancy 
among observed and predicted time series, 
therefore provide high accuracy in prediction. The 
correlation coefficient value can ranges from -1.00 
to +1.00 where negative range shows the negative 
correlation while positive ranges shows the positive 
correlation. The correlation coefficient value “1” 
shows the perfect correlation while “0” shows there 
is no correlation.

Results and Discussion
Development of Downscaled MLR model for 
prediction of rainfall 
Model’s Calibration and Validation
The NCEP predictors used for MLR model calibration 
for epoch 1961-1990 and validated for period 1991-
2001 in contradiction of the experiential rainfall. Data 
of 30 years (1961-1990 ) used as base line due to 
availability of adequate period which are required to 
established a reliable climatology, to include resilient 
global change signal. Calibration and validation were 
done separately for all the districts under study.

Predictors Selection
In this research, selection of predictors has been 
considered using cross correlation technique. 
About ten parameters i.e., Mean sea level pressure, 
Surface wind direction, Surface divergence, 500 
hPa airflow strength, 500 hPa zonal velocity, 500 
hPa vorticity, 500 hPa wind direction, 850 hPa 
geopotential height, Relative humidity at 500 hPa 
and Surface specific humidity were commonly used 
for all the 32 districts. However, out of these the ten 
predictors about 4-6 parameters showed strong 
correlation among the predictand and predictors 
for each district. Both positive as well as negative 
correlation has also been considered for estimation 
of downscaled rainfall.

Standardization and Validation of Downscaling 
Model
As per the assortment of predictors and predictands, 
The MLR was applied for every district to downscale 
rainfall. MLR model was based on regression 
coefficients, intercepts and error term, which 
depends upon relationship between selected 
predictors and predictand. The performance 
of downscaled model was judged on basis of 
comparison between various statistical parameters 
like RMSE, NMSE, NASH and CC of detected and 
modeled precipitation during standardization and 
validation of model. The observed result during the 
study was shown in table 2.

	 1991-2001	 Validation	 37.32	 0.33	 0.66	 0.81
Rajsamand	 1961-1990	 Calibration	 41.1	 0.23	 0.76	 0.82
	 1991-2001	 Validation	 50.5	 0.31	 0.68	 0.87
Sikar	 1961-1990	 Calibration	 35.08	 0.24	 0.75	 0.87
	 1991-2001	 Validation	 34.97	 0.25	 0.74	 0.86
Sirohi	 1961-1990	 Calibration	 45.81	 0.27	 0.72	 0.85
	 1991-2001	 Validation	 55.21	 0.33	 0.66	 0.81
Swaimadhopur	 1961-1990	 Calibration	 1.05	 0.02	 0.97	 0.98
	 1991-2001	 Validation	 0.92	 0.01	 0.98	 0.99
Tonk	 1961-1990	 Calibration	 34.5	 0.15	 0.84	 0.92
	 1991-2001	 Validation	 43.98	 0.21	 0.78	 0.88
Udaipur 	 1961-1990	 Calibration	 44.56	 0.17	 0.81	 0.91
	 1991-2001	 Validation	 59.22	 0.28	 0.71	 0.84
Alwar	 1961-1990	 Calibration	 37.14	 0.17	 0.82	 0.91
	 1991-2001	 Validation	 37.11	 0.18	 0.81	 0.9
Bikaner	 1961-1990	 Calibration	 23.57	 0.39	 0.6	 0.78
	 1991-2001	 Validation	 21.5	 0.42	 0.57	 0.76
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Table 3: Mean and coefficient of variation for observed and modeled 
precipitation during model calibration and validation

Station	                Calibration Period (1961-1990)	            Validation Period (1991-2001)

	           Mean              Coefficient of Variation	          Mean	         Coefficient of Variation

	 Obs	 Mod	 Obs	 Mod	 Obs	 Mod	 Obs	 Mod

Ajmer	 46.05	 47.89	 1.68	 1.31	 48.43	 46.14	 1.73	 1.44
Baran	 68.46	 71.79	 1.57	 1.35	 67.67	 69.19	 1.65	 1.41
Bhilwara	 53.07	 56.51	 1.61	 1.30	 55.20	 53.51	 1.71	 1.43
Bharatpur	 60.41	 64.39	 1.69	 1.37	 60.53	 62.23	 1.60	 1.43
Barmer	 24.05	 26.42	 1.81	 1.35	 26.40	 25.14	 1.92	 1.43
Bundi	 61.14	 64.29	 1.57	 1.35	 63.42	 64.04	 1.67	 1.39
Chittorgarh	 66.70	 71.45	 1.57	 1.29	 68.22	 66.69	 1.65	 1.41
Churu	 31.61	 32.13	 1.67	 1.23	 29.89	 31.96	 1.54	 1.29
Dausa	 57.29	 61.74	 1.65	 1.35	 60.06	 59.10	 1.60	 1.43
Dhaulpur	 66.44	 69.88	 1.72	 1.40	 64.36	 69.19	 1.66	 1.42
Dungarpur	 71.81	 76.80	 1.68	 1.37	 72.54	 72.77	 1.70	 1.44
Ganganagar	 21.17	 21.57	 1.56	 1.13	 18.74	 20.76	 1.48	 1.13
Hanumangarh	 27.79	 28.46	 1.57	 1.17	 25.25	 25.87	 1.46	 1.27
Jaipur	 50.70	 54.86	 1.65	 1.31	 53.07	 51.15	 1.63	 1.42
Jaisalmer	 15.28	 16.63	 1.88	 1.30	 16.73	 15.41	 1.88	 1.42
Jalor	 36.41	 40.19	 1.79	 1.37	 40.11	 37.78	 1.83	 1.44
Jhalawar	 75.19	 75.83	 1.54	 1.31	 74.59	 77.23	 1.60	 1.35
Jhunjhunu	 41.35	 43.94	 1.66	 1.28	 40.19	 41.77	 1.54	 1.32
Jodhpur	 27.05	 29.14	 1.72	 1.29	 28.23	 26.92	 1.77	 1.42
Karauli	 64.43	 67.72	 1.67	 1.39	 65.28	 68.56	 1.63	 1.41
Kota	 66.67	 70.41	 1.56	 1.35	 68.37	 67.51	 1.65	 1.42
Pali	 43.78	 46.88	 1.76	 1.34	 46.07	 46.61	 1.80	 1.40
Nagaur	 36.24	 39.05	 1.72	 1.27	 37.31	 36.05	 1.72	 1.41
Rajsamand	 50.71	 54.25	 1.66	 1.30	 52.16	 51.64	 1.72	 1.40
Sikar	 42.37	 45.43	 1.66	 1.26	 42.84	 43.72	 1.60	 1.35
Sirohi	 48.24	 52.55	 1.79	 1.35	 52.60	 51.12	 1.80	 1.44
Swai-madhopur	 19.55	 19.56	 0.34	 0.34	 19.80	 19.78	 0.34	 0.33
Tonk	 53.89	 58.23	 1.62	 1.34	 56.30	 55.84	 1.67	 1.41
Udaipur	 62.96	 67.17	 1.65	 1.35	 64.80	 64.85	 1.71	 1.45
Alwar	 54.1	 57.8	 1.64	 1.37	 55.2	 54.7	 1.56	 1.39
Bikaner	 22.17	 22.73	 1.69	 1.20	 20.58	 22.47	 1.60	 1.22

The calibration, results of correlation coefficients 
for all the districts were found to be more than 0.8, 
which indicate good correlation between observed 
and modeled rainfall. The validation of correlation 
coefficient gave good result and it more than 
0.68 for all the districts showing good correlation 
between observed and modeled rainfall. The NMSE 
in the case of calibration and validation of MLR 

downscaling models range from 0.02 to 0.39 and 
0.01 to 0.41 respectively, which is indicate less 
discrepancy between observed and predicted time 
series. Further, NASH efficiency for both calibration 
and validation period is about 0.60-0.97 and 0.50-
0.98 respectively. The overall model results indicate 
good performance during calibration as well as 
validation using NCEP variables.
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The calculation of downscaling model performance 
was done because of comparison between mean 
and variance values of both experiential and 
modeled precipitation throughout standardization 
and validation of model, outcomes are shown in 
Table 3. The coefficient of variation between detected 
and modeled rainfall of downscaled model for all 
districts were ranged from 0.34 to 1.89, 0.34 to 
1.35 for model calibration respectively, which clearly 
indicate that the downscaling model indicates that 
the downscaled model has predicted the observed 
precipitation with high accuracy during calibration 
of model. Similarly results during model validation 
also, the coefficient of variation in the observed and 
modelled precipitation of downscaling model of all 
the districts range from 0.34 to 1.92 and 0.33 to 
1.45 indicating good match between the observed 
and modelled precipitation. However,it has been 
found that precipitation is minute over or under-
predicted in approximately districts during model 
validation. For specimen, at Chittorgarh district, the 
detected precipitation was 68.22 mm whereas model 
produces 66.69 mm.

The observed precipitation variance was much 
higher than the simulated precipitation variance. 
Therefore, downscaled models were failed to capture 
full spectrum of precipitation variance. The outcome 
of this study also revealed that the performance 
of downscaled models was not much efficient in 
arresting mean precipitation. But, the model was quiet 
compatible to arrest variance in most of the districts.  
E.g. least variance of 0.34 and 0.33 was obtained 
in the observed and downscaled precipitation 
respectively at Swaimadhopur district and in other 
districts differences were not large throughout model 
calibration and validation (appendix-I).

Time Series Analysis of Detected and Downscaled 
Rainfall 
Based on comparison between monthly time 
series of detected and downscaled precipitation, 
efficacy of downscaled model during calibration 
and validation was estimated. This comparison was 
done for all districts under study individually. The 
result was shown in table 2 for all districts. Results 
describes that the monthly precipitation follows the 
analogous pattern like the detected precipitation. 
In limited districts, some months consume extreme 

precipitation standards, which remained under-
predicted by the model. The extreme measures 
occurrences are common phenomenon in hydrology, 
which frequently cannot be estimated with NCEP 
predictors. Testified that the downscaling model flops 
near arrest the extreme precipitation. However, it can 
successfully arrest the mean. The model used in this 
study was observed to capture the mean and low 
precipitation more accurately.

Projection of Monthly Rainfall using HadCM3 (A2 
& B2 Scenario) 
Projection of future scenarios has been carried out 
using the HadCM3 A2 & B2 emission scenarios with 
selected predictors. However, MLR downscaling 
techniques has been utilized for future projection of 
predictand. Further, whole time series of monthly 
predictand has been divided into decadal form 
(10 year time scale) for better representation of 
results. Box plot of decadal time steps are used 
for the determination of pattern in predictand. The 
projected rainfall of all district for decadal periods 
of 2001-2010, 2011-2020, 2021-2030, 2031-2040, 
2041-2050, 2051-2060, 2061-2070, 2071-2080, 
2081-2090 and 2091-2099 are Appendix II. The 
box middle line showed median valves whereas 
upper and lower edges gives the 75 per and 25 per 
of datasets respectively. The difference between 
75 per and 25 per called inter quartile range (IQR). 
The box plot of rainfall shows the increase in future 
rainfall in both cases of A2 and B2 scenarios for 
whole Rajasthan.

Conclusion
The native hydrological regimes of the arid and semi-
arid regions are highly prejudiced by the changes in 
climatic variables. Therefore, it remains very much 
imperative to comprehend and model the influence 
of climate change over arid and semi-arid region 
under current and future scenario. A Multiple Linear 
Regression (MLR) model was used in the study to 
downscale the precipitation in data scarce arid and 
semi-arid regions of Rajasthan state of India, which 
considered as most susceptible areas to climate 
change. The dataset of NCEP reanalysis from twenty 
grid points which surrounds the study range were 
used to select the predictors based on principal 
component analysis (PCA). The data of monthly 
rainfall from 1961-1990 time periods were used for 
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calibration as well as from 1991-2001 time period 
for authentication of MLR model.

Performance of MLR model to downscale monthly 
rainfall of Rajasthan was assessed to evaluate the 
climate change impact. The study showed that MLR 
model is more superior to downscale precipitation 
in most districts under study area. Statistical 
downscaling of rainfall is quite difficult as a result of 
erratic pattern of rainfall, poor relation local rainfall 
and ocean atmospheric circulation parameters of 
arid regions. The outcome of the present study 
indicates that MLR could be used for downscaling of 

monthly rainfall of regions under arid and semi-arid. 
The result observed that the downscaling of rainfall 
showed increase in future rainfall for both A2 and 
B2 scenario.
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1: The monthly time series of observed and downscaled rainfall of Ajmer district

2: The monthly time series of observed and downscaled rainfall of Baran district

3: The monthly time series of observed and downscaled rainfall of Bhilwara district

Appendix-I 
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4: The monthly time series of observed and downscaled rainfall of Bharatpur district

5: The monthly time series of observed and downscaled rainfall of Barmer district

6: The monthly time series of observed and downscaled rainfall of Bundi district
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8: The monthly time series of observed and downscaled rainfall of Churu district

9: The monthly time series of observed and downscaled rainfall of Dausa district

7: The monthly time series of observed and downscaled rainfall of Chittorgarh district
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10: The monthly time series of observed and downscaled rainfall of Dhaulpur district

11: The monthly time series of observed and downscaled rainfall of Dungarpur district

12: The monthly time series of observed and downscaled rainfall of Ganganagar district
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13: The monthly time series of observed and downscaled rainfall of Hanumangarh district

14: The monthly time series of observed and downscaled rainfall of Jaipurdistrict

15: The monthly time series of observed and downscaled rainfall of Jaisalmer district
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16: The monthly time series of observed and downscaled rainfall of Jalor district

17: The monthly time series of observed and downscaled rainfall of Jhalawar district

18: The monthly time series of observed and downscaled rainfall of Jhunjhunu district
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19: The monthly time series of observed and downscaled rainfall of Jodhpur district

20: The monthly time series of observed and downscaled rainfall of Karauli district

21: The monthly time series of observed and downscaled rainfall of Kota district
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22: The monthly time series of observed and downscaled rainfall of Pali district

23: The monthly time series of observed and downscaled rainfall of Nagaur district

24: The monthly time series of observed and downscaled rainfall of Rajsamand district
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25: The monthly time series of observed and downscaled rainfall of sikar district

26: The monthly time series of observed and downscaled rainfall of Sirohi district

27: The monthly time series of observed and downscaled rainfall of Swaimadhopur district
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29: The monthly time series of observed and downscaled rainfall of Udaipur district

28: The monthly time series of observed and downscaled rainfall of Tonk district

30: The monthly time series of observed and downscaled rainfall of Alwar district
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31: The monthly time series of observed and downscaled rainfall of Bikaner district

32: The monthly time series of observed and downscaled rainfall of Banswara district
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Appendix II

Box plot of all the districts of Rajasthan showing projected rainfall in MLR-A2 and B2 scenario.

	 MLR-A2 scenario						      MLR-B2 scenario
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